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ABSTRACT

Atmospheric reanalyses have been used in many studies to investigate the variabilities and trends of pre-

cipitation because of their global coverage and long record; however, their results must be properly analyzed

and their uncertainties must be understood. In this study, precipitation estimates from five global reanalyses

[ERA-Interim; MERRA, version 2 (MERRA2); JRA-55; CFSR; and 20CR, version 2c (20CRv2c)] and one

regional reanalysis (NARR) are compared against the CPC Unified Gauge-Based Analysis (CPCUGA) and

GPCP over the contiguous United States (CONUS) during the period 1980–2013. Reanalyses capture the

variability of the precipitation distribution over the CONUS as observed in CPCUGA and GPCP, but large

regional and seasonal differences exist. Compared with CPCUGA, global reanalyses generally overestimate

the precipitation over the western part of the country throughout the year and over the northeastern CONUS

during the fall and winter seasons. These issues may be associated with the difficulties models have in ac-

curately simulating precipitation over complex terrain and during snowfall events. Furthermore, systematic

errors found in five global reanalyses suggest that their physical processes inmodeling precipitation need to be

improved. Even though negative biases exist in NARR, its spatial variability is similar to both CPCUGA and

GPCP; this is anticipated because it assimilates observed precipitation, unlike the global reanalyses. Based on

CPCUGA, there is an average decreasing trend of21.38mmyr21 over the CONUS, which varies depending

on the regionwith only the north-central to northeastern parts of the country having positive trends. Although

all reanalyses exhibit similar interannual variation as observed in CPCUGA, their estimated precipitation

trends, both linear and spatial trends, are distinct from CPCUGA.

1. Introduction

Precipitation is a critical component of land surface

processes and the hydrological cycle. It is also an im-

portant factor in understanding climate variability.

Changing rainfall patterns have a significant impact

on water sources and directly influence industrial and

agricultural output as well as people’s daily lives. The

characteristics of precipitation over the contiguous

United States (CONUS) differ significantly in time

and space, which is the result of the interaction of

several complex atmospheric and oceanic processes

evolving at different spatial and temporal scales. To

better understand the long-term rainfall variability and

trends over the CONUS, an accurate and temporally

and spatially homogenous precipitation dataset should

be used.

Because of their spatial and temporal continuity, at-

mospheric reanalysis datasets have been widely used in

climate research. Reanalyses are generated through a

consistent data assimilation system and model, which

incorporates observations and a background model

forecast to generate uniform gridded data (Bosilovich

et al. 2008). With continuous improvements in data as-

similation methods and numerical models and the in-

creasing availability of observational data from satellite

and in situ measurements, recently developed reanalysis

datasets can produce increasingly accurate output of

atmospheric and oceanic variables for climate studies.

However, errors and uncertainties can still be raised

from aspects such as poor data quality, deficiency in
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model physical parameterizations, and inhomogeneities

introduced by changes in the observing system.

Global reanalyses do not directly generate pre-

cipitation analysis. In other words, precipitation is not

a control variable in the analysis procedure, and thus

precipitation in reanalysis is directly related to the

physical parameterizations in the modeling system

(Rienecker et al. 2011). For instance, Rienecker et al.

(2011) concluded that even thoughmicrowave-retrieved

rain rates are assimilated into models over oceans, hu-

midity information derived from passive microwave

measurements was found to have a much larger impact

on the reanalyzed precipitation than precipitation ob-

servations themselves in the Modern-Era Retrospective

Analysis for Research and Applications (MERRA).

Therefore, errors may occur when models cannot sim-

ulate the physical mechanisms responsible for preci-

pitation. In addition, precipitation in reanalysis products

is influenced by changes in observational data, including

the coverage and continuity of observation stations, ra-

diosondes, and satellite instruments, which can lead to

abrupt changes in precipitation records (Rienecker et al.

2011; Zhang et al. 2012). Hence, discontinuities in-

troduced by changing observational systems may be

found in reanalyzed climate data. To better understand

and quantify the uncertainties in the precipitation esti-

mates generated by reanalyses, comparisons with

observation-based precipitation datasets should be

performed.

To date, various studies regarding precipitation in

reanalysis datasets have been performed, from regional

to global spatial scales and from event to climate tem-

poral scales (Ma et al. 2009; Wang and Zeng 2012;

Bosilovich 2013; Lee and Biasutti 2014; Blacutt et al.

2015; Prakash et al. 2015; Dolinar et al. 2016). Bosilovich

et al. (2008) evaluated global precipitation from five

reanalyses using the Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP) during the

period 1979–2005. Results showed that the Japanese

25-year Reanalysis Project (JRA-25) performed better

than the other four reanalyses in both the Northern

Hemisphere continents and tropical oceans, but con-

tained distinct variation depending on the available

observing system. Kishore et al. (2016) validated four

reanalyses with gridded India Meteorological De-

partment (IMD) rainfall datasets over the Indian sub-

continent and concluded that all reanalyses captured the

strong interannual variations within the Indian region

well, and of all the reanalyses, ERA-Interim showed the

most realistic values with respect to IMD observations.

Ashouri et al. (2016) evaluated the skill of MERRA in

reproducing historical extreme precipitation events in the

United States with CPC Unified Gauge-Based Analysis

(CPCUGA) data and showed that MERRA reasonably

mimics the continental-scale patterns of change as ob-

served by CPCUGA data while underestimating the

magnitudes of extreme events, particularly over the Gulf

Coast regions. These evaluation studies suggest that re-

analyzed precipitation data differ seasonally and re-

gionally, often with observations, despite the reanalysis

precipitation products showing similar large-scale pat-

terns to the observed precipitation.

In addition to reanalysis products, spatially and

temporally uniform global precipitation datasets can

also be generated by merging rain gauge observations

with satellite analysis. These long-term, observation-

based global precipitation products are favored in

various research uses, including global climate

change analysis, hydrological cycle studies, and ver-

ification of numerical models (Adler et al. 2003; Xie

et al. 2003; Huffman et al. 2009). One such product is

the Global Precipitation Climatology Project

(GPCP) satellite–gauge (SG) combined product.

GPCP produces monthly precipitation estimates by

combining precipitation information available from

each source into a final merged product, taking ad-

vantage of the strengths of each data type and re-

moving biases based on hierarchical relations in the

stepwise approach (Adler et al. 2003). The GPCP

precipitation estimates have been used as reference

data for many trend analyses and validation studies of

climate models and reanalyses (Gu et al. 2007;

Dee et al. 2011; Fensholt and Rasmussen 2011;

Rienecker et al. 2011; Stanfield et al. 2015;

Hatzianastassiou et al. 2016). With adequate satellite

and Global Precipitation Climatology Centre (GPCC)

gauge sampling over the CONUS, the estimates from

GPCP might be a suitable tool to investigate the long-

term pattern of precipitation over the United States.

However, GPCP precipitation does have uncertainties

associated with subjective (precipitation estimation

and merging algorithms, input data processing) and

objective factors (satellite instruments, rain gauge

coverage), and these uncertainties should be taken

into consideration when comparing GPCP with

reanalyses.

Since the analysis in this study is conducted over

the CONUS, the dense rain gauge networks should be

taken advantage of. Therefore, a gridded gauge-based

precipitation product is also included in this study to

address the uncertainties in GPCP and validate the

reanalyzed precipitation. Here, CPCUGA is employed.

The creation of daily precipitation analysis in CPCUGA

is done by interpolating gauge observations using ob-

jective analysis technique at fine spatial resolution. Chen

et al. (2008a) evaluated three objective techniques to
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determine the best one to be applied to CPC to obtain

the gauge-based daily precipitation analysis. While all of

the objective analysis techniques examined by Chen

et al. (2008a) are adequate, optimal interpolation (OI)

performed the best and is currently used in CPCUGA.

In this study, precipitation estimates from five global

reanalyses, including ERA-Interim; MERRA, version 2

(MERRA2); Japanese 55-year Reanalysis (JRA-55);

Climate Forecast System Reanalysis (CFSR); and

Twentieth Century Reanalysis, version 2c (20CRv2c), as

well as one regional reanalysis, North American Re-

gional Reanalysis (NARR), are evaluated using the

CPCUGA monthly analysis and GPCP, version 2.2,

monthly products over the CONUS during the period

from 1980 through 2013. Because CPCUGA is only

available over global land, it is important to characterize

GPCP for global use. Several global reanalyses used in

this study assimilate satellite radiances to generate

precipitation estimates therefore some data overlap

occurs between them and GPCP. The comparisons with

CPCUGA may identify if the biases in reanalyses orig-

inate from model parameterizations or the assimilated

data. For instance, if both GPCP and reanalyses show

similar bias patterns with respect to CPCUGA, it is most

likely that the biases in reanalyses are originated from

assimilated satellite radiances because GPCP also uses

satellite-retrieved precipitation estimates from infrared

(IR) and microwave measurements; otherwise, the bia-

ses are likely a result of the model parameterizations.

Furthermore, the intercomparisons between global and

regional reanalyses may reveal how assimilated data

(with or without observed precipitation data) influence

the precipitation output (e.g., NARR directly assimi-

lates observed precipitation, unlike the global rean-

alyses). A trend analysis is also conducted to determine

if reanalyses can be used in trend studies. The aim of this

paper is to understand the characteristics of pre-

cipitation over the CONUS in the past three decades, to

identify the uncertainties and errors associated with

reanalyzed precipitation products, and to determine

what improvements are needed, leading to better use in

the future. It should be noted that the assessment in this

paper may not be easily extendable to other regions

because there are more datasets available from both

satellites (better coverage) and radiosondes over the

CONUS, which cannot be found over other regions.

2. Datasets

a. CPC Unified Gauge-Based Analysis Data

CPC Unified Gauge-Based Analysis data are pro-

duced as a part of the NationalOceanic andAtmospheric

Administration’s (NOAA) CPC Unified Precipitation

Project. This project aims to construct consistent and

high-quality precipitation products over land globally

(Chen et al. 2008a). The gauge analysis used in this study

covers the CONUS at a fine spatial resolution of 0.258 3
0.258 and is quantitatively consistent with that covering

the global land on a coarser resolution of 0.58 3 0.58
(Chen et al. 2008a). The daily precipitation is created

based on quality-controlled daily gauge reports col-

lected from NOAA/National Climatic Data Center

(NCDC) River Forecast Centers (RFCs) and daily ac-

cumulations from Hourly Precipitation Data (HPD) set

over the CONUS, which are then interpolated through

the OI technique with an orographic effects correction

(Xie et al. 2007). Based on a global gauge density plot

from Chen et al. (2008b), there are more than three

gauges within each 18 3 18 grid box over the central and

eastern parts of the CONUS and West Coast. However,

gauge coverage is sparse over the mountainous regions,

and some grid boxes over Montana and between Cal-

ifornia andNevada have no gauges. The sparse coverage

of gauge instruments can lead to significant sampling

errors over these regions and underestimation by CPC

precipitation analyses. These issues will be discussed

further in section 5. Further details on the interpolation

algorithm, gauge algorithm evaluation, and the con-

struction of the dataset can be found in Xie et al. (2007)

and Chen et al. (2008a, b). In this study, the gridded

monthly CPC gauge analysis is used as the primary

validation data to evaluate the performances of

reanalyses.

b. GPCP SG combined (version 2.2) dataset

The GPCP product is produced at the National

Aeronautics and Space Administration (NASA) God-

dard Space Flight Center (GSFC). It provides global

monthly precipitation estimates on a 2.58 3 2.58 (longi-
tude) grid from combined multisatellite and gauge

observations and is available from January 1979 to

present (Adler et al. 2003). For the satellite field, during

the pre–Special Sensor Microwave Imager (SSM/I) pe-

riod (1979–86), the estimates are based on the Outgoing

Longwave Radiative (OLR) Precipitation Index (OPI)

technique that retrieves precipitation using IR observa-

tions from low-Earth-orbiting satellites (Xie and Arkin

1998). After multiple meteorological satellites were

launched in 1986, the SSM/I and Special Sensor Micro-

wave Imager/Sounder (SSMIS; from 2008 to present)

estimates calculated from the Wilheit et al. (1991)

emission and Grody (1991) scattering algorithms; Tele-

vision and Infrared Observation Satellite (TIROS)

Operational Vertical Sounder (TOVS) and Atmo-

spheric Infrared Sounder (AIRS) estimates based on the

AUGUST 2017 CU I ET AL . 2229

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:13 PM UTC



methods of Susskind and Pfaendtner (1989) and

Susskind et al. (1997); and the Geostationary Opera-

tional Environmental Satellite (GOES) precipitation

index (GPI; Arkin andMeisner 1987) product have been

added to theGPCP product. TheGPI values aremerged

with SSM/I (SSMIS) estimates between 408S and 408N
and calibrated by TOVS (AIRS) data at the 408 latitude
bands to soften the transition poleward. Polarward from

408, SSM/I (SSM/I)/TOVS (AIRS) data are used. The

preliminary satellite field from both pre-SSM/I and

SSM/I periods is climatologically calibrated with the

gauge data from GPCC over the large-scale domain.

Then, the gauge-adjusted satellite precipitation esti-

mates are merged with GPCC gauge analyses for each

grid box using the inverse variance weighting method to

form the final SG monthly product. A more detailed

description of input datasets and merging methods used

in the GPCP product can be found in Adler et al. (2003),

Huffman et al. (2009), and Huffman and Bolvin (2013).

c. Reanalysis datasets

In this study, the simulated monthly precipitation

from five global reanalyses (ERA-Interim, MERRA2,

JRA-55, CFSR, and 20CRv2c) and one regional re-

analysis (NARR) are compared and evaluated with

CPCUGA and GPCP products during the period from

1980 to 2013 over the CONUS. A general summary of

each reanalysis dataset, including horizontal and spatial

resolutions, temporal ranges, assimilation types, and

references, is shown in Table 1.

1) ERA-INTERIM

ERA-Interim was developed by the ECMWF as a

replacement for its preceding version, ERA-40 (Dee

et al. 2011). Assimilated rain-affected SSM/I (SSMIS)

radiances data from the Defense Meteorological Satel-

lite Program (DMSP) series satellites as well as data

from radiosonde and ground-based measurements are

used as important input to generate a humidity analysis

field. Compared to ERA-40, the revised humidity

analysis scheme and method for minimizing biases in

radiance data have helped ERA-Interim produce

more reasonable precipitation estimates with respect

to observational-based precipitation product (Dee et al.

2011). The Sundqvist (1978) scheme is employed

for large-scale precipitation simulation and the Lopez

and Moreau (2005) scheme is adopted for convection

parameterization.

2) MERRA2

MERRA2 is a NASA atmospheric reanalysis using a

recent version of the Goddard Earth Observing System,

version 5 (GEOS-5), data assimilation system (DAS;

Bosilovich et al. 2015). MERRA2 uses an incremental

analysis update that minimizes the spindown effects of

the water vapor analysis. Although MERRA2 assimi-

lates rain rate from SSM/I and Tropical Rainfall Mea-

suringMission (TRMM)Microwave Imager (TMI) over

the ocean, these data are given a low weight and have

a weaker impact on the increments than the humidity

information derived from satellite radiance data [a full

list of satellite radiance data assimilated into MERRA2

can be found in Koster et al. (2016)], as mentioned in

the previous section. Over land, MERRA2 does not

assimilate precipitation (Rienecker et al. 2011); there-

fore, it is similar to ERA-Interim, which produces a

water vapor analysis field using in situ and satellite

radiance data. Large-scale precipitation is simulated

based on the scheme of Zhao and Carr (1997), which

is sensitive to the moisture and cloud condensation

over land (Rienecker et al. 2008). Convection is param-

eterized using the relaxed Arakawa–Schubert (RAS)

scheme of Moorthi and Suarez (1992; Molod et al. 2015).

3) JRA-55

JRA-55 is the second Japanese global atmospheric

reanalysis created by the Japan Meteorological Agency

(JMA), which was first produced by the TL319 version

of JMA’s operational data assimilation system in De-

cember 2009. The newly available observations as well

as the improved previous observations have helped

JRA-55 produce considerably better simulated results

TABLE 1. Summary of the reanalysis datasets used in this study. In the third column, 3DVAR stands for three-dimensional variational data

assimilation and 4DVAR stands for four-dimensional variational data assimilation.

Reanalysis

Model

resolution Assimilation method

Horizontal grid

spacing (lat 3 lon) Temporal range Reference

ERA-Interim T255 L60 4DVAR 0.758 3 0.758 From Jan 1979 to present Dee et al. (2011)

MERRA2 72 sigma

level

3DVAR 0.6258 3 0.58 From Jan 1980 to present Rienecker et al. (2011);

Bosilovich et al. (2015)

JRA-55 T319 L60 4DVAR 1.258 3 1.258 From Jan 1958 to Dec 2013 Kobayashi et al. (2015)

CFSR T382 L64 3DVAR 0.58 3 0.58 From Jan 1979 to present Saha et al. (2010)

20CRv2c T62 L28 Ensemble Kalman filter 28 3 28 From Jan 1851 to Dec 2014 Compo et al. (2011)

NARR 32 km 3DVAR 32 km 3 32 km From Jan 1979 to present Mesinger et al. (2006)
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than JRA-25 (Kobayashi et al. 2015). To generate con-

vection, a prognostic mass-flux-type Arakawa–Schubert

scheme (Arakawa and Schubert 1974) with a convection-

triggering mechanism known as the dynamic CAPE

(DCAPE) generation rate fromXie and Zhang (2000) is

adopted for the cumulus parameterization. The vertical

profile of upward mass flux is assumed to be linear with

height (Moorthi and Suarez 1992) and the mass flux at

the cloud base is determined by solving a prognostic

equation (Randall and Pan 1993). The scheme was up-

dated by Nakagawa and Shimpo (2004) by considering

the effect of detrainment due to downdrafts instead of

simply reevaporating the precipitation, which cools and

moistens the lower troposphere and represents convec-

tive downdrafts more realistically (Onogi et al. 2007).

4) CFSR

CFSR is produced by the National Centers for Envi-

ronmental Prediction (NCEP). It contains various up-

grades in model physics and assimilation algorithms

compared to the previous NCEP reanalyses. Differing

from other reanalysis datasets using only an atmospheric

model, CFSR coupled the new GFS atmospheric model

with Modular Ocean Model, version 4 (MOM4), to as-

similate and predict atmospheric states every 6 h. For

the atmospheric forecast model, a simplified Arakawa–

Schubert scheme (Arakawa and Schubert 1974; Pan

and Wu 1995; Hong and Pan 1998) is applied for

the cumulus convection parameterization, with cumulus

momentum mixing and orographic gravity wave drag

(Kim and Arakawa 1995; Alpert et al. 1988). The shallow

convection parameterization follows Tiedtke (1983) for

wherever deep convection parameterization is not active.

5) 20CRV2C

The 20CR project is an effort led by NOAA and the

University of Colorado Boulder’s Cooperative Institute

for Research in Environmental Sciences (CIRES) to

produce a reanalysis dataset spanning the entire twenti-

eth century, assimilating only surface observations of

subdaily sea level pressure (SLP), monthly sea surface

temperature (SST), and sea ice distributions as boundary

conditions. Using the ensemble Kalman filter data

assimilation approach (Whitaker and Hamill 2002),

20CRv2c directly yields each 6-h analysis as the most

likely state of the global atmosphere and provides un-

certainty estimates in the form of 56 realizations (Compo

et al. 2011). 20CRv2c uses the same model as the NCEP

Global Forecast System (GFS) 2008 experimental ver-

sion (2008ex), version 2. By applying a prognostic cloud

condensate scheme, the precipitation rate is para-

meterized following the approaches of Zhao and Carr

(1997) for ice and Sundqvist et al. (1989) for liquid water.

6) NARR

NCEP NARR is a regional reanalysis that produces

high-resolution analyzed atmospheric variables for the

North American domain (Mesinger et al. 2006). NARR

takes advantage of the recently operational version of

the NCEP regional Eta model, where the convective

parameterization is adopted from Betts–Miller–Janjić

methods (Betts 1986; Janjić 1995). Unlike the global

reanalyses, NARR does assimilate observed precipi-

tation data as its latent heat profiles (Mesinger et al.

2006). Therefore, the precipitation field is not a pro-

duct of just physical parameterizations (Bukovsky and

Karoly 2007). Over the CONUS, the observed pre-

cipitation amounts from NCDC daily cooperative sta-

tions, RFC stations, and daily accumulations of HPD

are analyzed using an inverse-square-distance weighting

scheme and an orographic enhancement technique

(Daly et al. 1994) to obtain a 1/88 daily analysis, then the

daily CONUS analysis is disaggregated to an hourly

analysis using temporal weights derived from a 2.58
analysis of hourly rain gauge data (Mesinger et al. 2006).

3. Methodology

Two reference datasets and six reanalyses are

regridded to 28 3 28 to match the spatial resolution of

20CRv2c. All comparisons and trend analyses are con-

ducted based on the grid box of 28 3 28with a total of 260
grid boxes over the study domain. Because precipitation

patterns over the CONUS vary in space and time, the

study domain is divided into six subdomains:West Coast

(WC), Mountain West (MW), Northern Great Plains

(NGP), Northeast (NE), Southern Great Plains (SGP),

and Southeast (SE), as shown in Fig. 1a. Comparisons

are performed for four seasons: spring (MAM), summer

(JJA), fall (SON), and winter (DJF). Several statistical

metrics, such as correlation coefficient, root-mean-

square error (RMSE), and relative difference percent-

age (RDP) are calculated to evaluate the performance

of reanalysis precipitation based on their computed

domain and subdomain monthly mean precipitation.

The RDP is defined as

RDP5 (R2CPCUGA)/CPCUGA3 100%, (1)

where R represents the precipitation amounts from the

GPCP and reanalyses. Spatial distributions of annual

and seasonal precipitation, as well as the correlation

coefficients between reanalyses and CPCUGA, are also

plotted, with significant tests performed for each grid

box. Additionally, to investigate the differences be-

tween CPCUGA and the reanalyses in precipitation

distribution, probability density functions (PDFs) and
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cumulative distribution functions (CDFs) are computed

from all monthly precipitation estimates. In terms of

trend analysis, a linear regression function is applied to

annual accumulated precipitation from two reference

datasets and six reanalyses. Their interannual trends are

generated by minimizing the chi-squared error, and the

trend spatial distributions of monthly precipitation

anomaly during a 34-yr study period are plotted to

demonstrate the regional differences in precipitation

trend over the CONUS. Nonparametric Mann–Kendall

tests (Mann 1945; Kendall 1975) are applied to each grid

box to examine if the trends are significant at the 95%

confidence level.

4. Results

a. Comparison between CPCUGA and GPCP

To quantitatively assess GPCP, a simple comparison

with CPCUGA is performed. The monthly mean pre-

cipitation from two datasets during the study period

for each subdomain is shown in Fig. 1b. Except for

the NE region, where GPCP shows less seasonal vari-

ability compared to CPCUGA, themonthly precipitation

pattern agrees well between two datasets for the five

subdomains. In terms of precipitation amount, GPCP is

higher than CPCUGA, except for the MW and WC re-

gions. The differences between the two datasets are

around 1mmday21 during the winter months over the

NE region. Figure 2 is the scatterplot of monthly pre-

cipitation for each 28 grid box. There are a total of 106080
(260 grid boxes 3 408 months) paired points during the

34-yr period. The two datasets show a strong linear re-

lationship and are well correlated with each other; how-

ever, the mean precipitation estimated by GPCP is;8%

higher than CPCUGA. Also, if treating CPCUGA pre-

cipitation values as ‘‘truth,’’ GPCP has an RMSE of

0.75mmday21. The comparisons in Figs. 1 and 2 have

suggested that GPCP may have a wet bias, particularly

over the Great Plains and East Coast, but overall per-

forms well when compared with CPCUGA.

b. Evaluation of reanalyzed precipitation

Figure 3 illustrates the spatial distribution of annual

mean precipitation of CPCUGA, GPCP, and the six

reanalyses over the CONUS during the period

1980–2013. Figures 3a and 3b show that the observed

precipitation amounts generally decrease from the East

Coast to the West Coast, with the highest rainfall

amounts over the northwest coast, southeast coast, and

south-central parts of theUnited States, while the lowest

amounts occur over the mountainous regions. The re-

analyses demonstrate reasonable spatial distributions

with respect to the CPCUGA and GPCP results and

capture the variation of the precipitation climate regime

very well, particularly over the Pacific Northwest region.

FIG. 2. Scatterplot of monthly mean precipitation between

CPCUGA and GPCP. There are a total of 106 080 (260 grid

boxes3 408 months) points on the plot. The color bar indicates the

number density.

FIG. 1. (a) CONUS divided into six regions: 1) WC, 2) MW, 3)

NGP, 4) NE, 5) SGP, and 6) SE. (b)Monthly mean precipitation of

CPCUGA (solid) and GPCP (dashed) for each region during the

period 1980–2013.
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However, large differences exist between the two refer-

ence datasets and the global reanalyses over the moun-

tainous areas where precipitation amounts simulated by

the global reanalyses are generally higher than both

CPCUGA and GPCP. Most of the observed precipita-

tion amounts range from 0.25 to 1.75mmday21, while

FIG. 3. Spatial distribution of annual mean precipitation (mmday21) for (a) CPCUGA, (b) GPCP, and (c)–(h)

the six reanalyses during the period 1980–2013. Also shown are the pattern correlation r values between CPCUGA

and GPCP and between CPCUGA and reanalyses.
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precipitation from all five global reanalyses can exceed

2.5mmday21 over the mountainous regions. 20CRv2c

and JRA-55 also have large areas with discontinuities in

precipitation distribution located over southern Mon-

tana. NARR exhibits a very similar pattern as the two

reference datasets, but precipitation amounts estimated

by NARR are less intense over the eastern CONUS. The

spatial patterns of reanalyzed annual mean precipitation

are all well correlatedwithCPCUGA, ranging from0.823

in 20CRv2c to 0.940 in NARR.

Figure 4a shows CPCUGA’s averaged seasonal mean

precipitation (spring, summer, fall, and winter) during

the study period. Except for the western mountainous

regions, which receive the least precipitation throughout

the year, the precipitation distributions show significant

seasonal variations over the CONUS based on the

CPCUGA data. Figures 4b–h show the differences of

seasonal mean precipitation (%) between CPCUGA

and GPCP, and six reanalyses. The gray crosses repre-

sent the grid points having RDP values outside of the

two standard deviations.

The GPCP precipitation amounts are more than

CPCUGA, except for the northwest and certain parts

of mountainous regions throughout the year. Large

differences also exist between the global reanalyses and

CPCUGA for roughly the same areas. The seasonal

spatial distributions of ERA-Interim, MERRA2, and

CFSR are similar to each other in that they underesti-

mate the precipitation amounts over the south-central

regions during spring, fall, andwinter and over theGreat

Plains during summer. The RDP patterns in JRA-55

during fall and winter are similar to the three reanalysis

datasets mentioned above, but during summer over-

estimation is found in JRA-55 over the Great Plains.

With regard to 20CRv2c, there is a negative bias in the

West Coast for all seasons and significant underestimation

over the southwest during summer. Differing from the

other reanalyses, 20CRv2c severely overestimates pre-

cipitation amounts over the mountainous and central re-

gions during spring, summer, and winter. The distributions

of NARR’s RDPs are distinct from global reanalyses, with

relative low spatial biases, between 210% and 10%,

over the CONUS domain.

The seasonal mean precipitation amounts (mmday21)

and their standard deviations estimated by CPCUGA,

GPCP, and the six reanalyses are listed in Table 2.

CPCUGA has an annual mean precipitation

of 2.21 mm day21 with a standard deviation

of 2.00mmday21. The seasonal mean precipitation of

CPCUGA ranges from 2.02mmday21 during winter

to 2.39mmday21 during summer; the same goes for

GPCP, except the GPCP precipitation amounts are

higher. The highest standard deviation of 2.24mmday21

for CPCUGA occurs during winter and is likely because

of the large precipitation amounts in the northwestern

region that increase the variation of precipitation values.

Table 3 provides the RDPs (%) and RMSEs (mmday21)

of six reanalyses using CPCUGA as reference data, and

using GPCP as reference data for seasonal mean pre-

cipitation in each defined region. Over the WC, the

precipitation values are underestimated by ERA-

Interim, JRA-55, 20CRv2c, and NARR year-round, and

their RMSEs are high during the winter season when

abundant precipitation falls in this region. Apart from

NARR, which slightly underestimates precipitation,

overestimation of ;20% is found in global reanalyses

over the MW. Significant overestimation of winter sea-

son precipitation over the NGP and NE is also found in

global reanalyses. The RDP values have less seasonal

variation over the SE, probably due to the least variation

of precipitation types associated with the subtropical

climate over this region. NARR underestimates the

precipitation year-round in all regions, though the overall

biases and RMSE values compared with CPCUGA and

GPCP are the smallest among all six reanalyses. For

global reanalyses, ERA-Interim and MERRA2 show

better performance in terms of the relatively lower

RMSE values. It is noted that most RMSEs calculated

using GPCP as reference are smaller than those using

CPCUGA as reference in four reanalyses that assimilate

satellite radiances, which makes sense because GPCP

uses satellite-retrieved precipitation.

Correlation coefficients of monthly precipitation be-

tween CPCUGA and GPCP and between CPCUGA

and reanalyses were calculated for each grid box and are

shown in Fig. 5. Grid points that are significant at the

95% confidence interval based on a one-tailed z test

using the Fisher r-to-z transformation (Fisher 1915) are

also shown as gray crosses in Fig. 5. The spatial distri-

butions of correlation coefficients have illustrated that

NARR is in excellent agreement with CPCUGA, with

correlation coefficients exceeding 0.95 over most of the

CONUS. GPCP is less correlated with CPCUGA com-

pared to NARR, but correlation coefficients are still

greater than 0.9. The global reanalyses are strongly

correlated with CPCUGA over the U.S. West Coast,

where values are higher than 0.9. ERA-Interim and

JRA-55 have significantly high correlations over the

north-central to northeastern parts of the country, while

MERRA2 is well correlated with CPCUGA over the

north-central and southwestern regions. Correlations

less than 0.7 over the northern to central mountainous

regions in global reanalyses correspond to the regions

where they underestimate precipitation as shown in

Fig. 4. 20CRv2c is less correlated with CPCUGA with

respect to other reanalyses. Lower correlations around
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FIG. 4. Spatial distribution of (a) seasonal mean precipitation (mmday21) for CPCUGA and (b)–(h) seasonal RDP between

CPCUGAandGPCP and betweenCPCUGAand the six reanalyses during the period 1980–2013. The gray crosses indicate the

grid boxes having RDP values outside of the two std devs.
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0.2–0.35 are found between CPCUGA and 20CRv2c

from eastern Arizona to western New Mexico.

Histograms of the PDFs and CDFs of monthly mean

precipitation from CPCUGA (blue line), GPCP (red

line), and the six reanalyses (red line) are plotted in

Fig. 6 (a total of 260 grid boxes 3 408 months). The

median precipitation values of CPCUGA (blue), GPCP

(red), and the reanalyses (red) are shown along the

dashed lines in Fig. 6. GPCP has a higher median value

than NARR (1.99 vs 1.74mmday21), and some differ-

ences in frequency are found for precipitation with a

range from 0–2 to 3–6mmday21. Except NARR, all

reanalyses have fewer precipitation estimates less than

1.0mmday21, especially in JRA-55 and 20CRv2c. The

percentages of JRA-55 and 20CRv2c precipitation

amounts that are less than 1mmday21 are;20%, which

is;10% less than the CPCUGA estimates—this is most

likely due to their relatively coarse spatial resolution

(28 3 28 for 20CRv2c and 1.258 3 1.258 for JRA-55).

With coarser resolution, more precipitation likely comes

from parameterized convection; therefore, they tend to

generate fewer estimates with lower precipitation

amounts. Their PDFs are skewed toward higher pre-

cipitation values (i.e., more skewed), especially

20CRv2c; thus, the median of 20CRv2c is much higher

than CPCUGA (2.41 vs 1.74mmday21). The pre-

cipitation distributions have relatively small differences

between ERA-Interim, MERRA2, and CFSR, and they

have more precipitation estimates between 1.0 and

6.0mmday21. Unexpectedly, the total numbers of high

precipitation days (.8.0mmday21) from the five global

reanalyses agree well with CPCUGA, presumably due

to the small number of samples. As for NARR, its dis-

tribution is more skewed to the lower precipitation

values, which results in a consistent low bias in NARR.

c. Trend analysis

Changes in the input data sources will lead to in-

homogeneities in satellite-basedGPCP and in reanalysis

products that assimilate satellite observations, and could

result in false trending. Zhang et al. (2012) summarized

up to 12 major changes in observation systems in CFSR,

such as the introduction of TOVS in 1979, the inclusion

of Geostationary Meteorological Satellite (GMS) from

JMA in 1987, and the incorporation of AIRS in 2004.

Although GPCC gauge observations are merged into

GPCP to form the final monthly precipitation product

and precipitation estimates of GPCP are likely less

sensitive to the changes of satellite observations, par-

ticularity over areas that have relatively dense GPCC

coverage such as the CONUS, caution should still be

taken when using it to study trends since it is still pri-

marily based on satellite data. Therefore, to determine if

GPCP and reanalyzed precipitation can be used for

climatology trend studies, trend analyses are conducted

here. Figure 7 shows the interannual variability of

CPCUGA, GPCP, and reanalyzed annual accumulated

precipitation over the CONUS during the 34-yr study

period. The blue line represents the linear regression fit

to the annual accumulated precipitation by minimizing

the chi-squared error. The shaded areas contain the

precipitation values within two standard deviations of

the slope. CPCUGA annual accumulated precipitation

and its calculated trend are illustrated as dashed lines

in Figs. 7b–h CPCUGA has an annual average pre-

cipitation of 806.0mm, while GPCP has an average of

873.1mm with similar interannual variations during the

34-yr period. The annual accumulated precipitation

maximum (940.7mm for CPCUGA, 1002.3mm for

GPCP) occurred in 1983 while lows (772.2 and 734.2mm

for CPCUGA, 794.1 and 735.6mm for GPCP) occurred

in 1988 and 2012 in both CPCUGA and GPCP.-

According to the regression line, CPCUGA and GPCP

show negative trends of 21.38 and 21.83mmyr21,

respectively. In terms of reanalyses, although they ex-

hibit similar interannual variability of precipitation

to CPCUGA (dashed line), their precipitation amounts

are significantly different. During the study period,

MERRA2, JRA-55, 20CRv2c, andCFSRhave consistent

positive biases, while NARR has a consistent negative

bias compared to CPCUGA. The annual accumulated

precipitation in ERA-Interim is more than CPCUGA

TABLE 2. Year-round and seasonal mean precipitation values (mmday21) and std dev (in parentheses) estimated by CPCUGA, GPCP,

and the six reanalyses.

Year-round Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

CPCUGA 2.21 (2.00) 2.24 (1.80) 2.39 (1.88) 2.17 (2.05) 2.02 (2.24)

GPCP 2.39 (1.91) 2.39 (1.72) 2.58 (1.86) 2.32 (1.94) 2.27 (2.08)

ERA-Interim 2.24 (1.78) 2.34 (1.58) 2.45 (1.92) 2.17 (1.79) 1.99 (1.80)

MERRA2 2.36 (2.00) 2.55 (1.90) 2.36 (1.83) 2.29 (2.03) 2.25 (2.22)

JRA-55 2.66 (2.01) 2.74 (1.74) 3.13 (2.19) 2.47 (2.02) 2.29 (1.96)

CFSR 2.47 (2.10) 2.69 (1.87) 2.33 (2.21) 2.41 (2.20) 2.44 (2.11)

20CRv2c 2.73 (1.98) 3.15 (1.91) 2.75 (2.29) 2.38 (1.79) 2.65 (1.80)

NARR 1.97 (1.70) 2.05 (1.61) 2.15 (1.63) 1.88 (1.67) 1.79 (1.87)
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from 1980 through 1995, but their differences gradually

decrease from 1996 to 2004 until ERA-Interim is below

CPCUGA. This pattern leads to a significant decreasing

trend in ERA-Interim. Besides ERA-Interim, only JRA-

55 (20.69mmyr21) and 20CRv2c (20.33mmyr21) gen-

erate negative trends, but their magnitudes are much

FIG. 5. Spatial distribution of correlation coefficients between CPCUGAandGPCP and between CPCUGAand

the six reanalyses during the period 1980–2013. The gray crosses indicate the grid boxes with statistical significance

at the 95% confidence level based on a one-tailed z test using the Fisher r-to-z transformation.
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FIG. 6. PDFs (%) and CDFs (%) for CPCUGA (blue) and GPCP and the six reanalyses (red) of

monthly mean precipitation (mm day21). Dashed lines represent the median line. The values listed in

the plots are the median monthly mean precipitation of CPCUGA (blue) and the GPCP (red) and

reanalyses (red).
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less than CPCUGA’s trend. MERRA2 and CFSR have

slightly increasing trends of 0.46 and 0.45mmyr21, re-

spectively. A positive trend is also found in NARR, with

an increasing annual precipitation of 1.38mmyr21,

which is identical in magnitude to CPCUGA, but with

an opposite sign.

Furthermore, in order to study the variation of re-

gional precipitation trends, trend analysis of spatial

distribution based on calculated monthly precipitation

anomaly is also conducted. Based on the 34 years of

data, the precipitation trend is calculated at each grid

box using the same linear regression method as above.

In addition, the Mann–Kendall test is used to determine

if each grid box has an increasing or decreasing trend

that is significant at the 95% confidence level. Grid

boxes having trends with statistical significance at the

95% confidence interval are marked with gray crosses

in Fig. 8. Based on CPCUGA and GPCP distributions,

the northeastern and north-central parts of the country

have positive trends, while other regions have negative

trends. Both increasing and decreasing trend rates

are moderate in CPCUGA and GPCP, with a range

from 20.3 to 0.3mmyr21 over most of the CONUS

domain. In both datasets the negative trends are found

over the central to southern mountainous regions. The

spatial trend distributions of the reanalyses vary signif-

icantly. Of all six reanalyses, MERRA2 and CFSR show

spatial distributions closest to the two reference data-

sets, but again, the magnitudes are different, such as the

increasing trends being more intense (;0.6mmyr21) in

these two reanalyses over the north-central and north-

eastern regions. Significant decreasing trends can be up

to 20.9mmyr21 in ERA-Interim over the majority of

the CONUS, as seen in Fig. 8. Except for the central to

mountainous western portions of the country, which

have evident negative trends, positive trends are found

FIG. 7. (a)–(h) Linear trends (dark blue line) calculated from annual accumulated precipitation (mm; solid black

circle and line) of CPCUGA, GPCP, and the six reanalyses during the period of 1980–2013. The shaded areas

represent the area within 95% confidence interval of the slope based on the z test. The annual accumulated pre-

cipitation and linear trend of CPCUGA are also plotted as dashed lines in (b)–(h) as a baseline.
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everywhere else in JRA-55. It seems assimilating gauge

observations does not really help NARR to generate

proper precipitation trends. The overall performance of

the reanalyses in generating trends is unreliable.

5. Discussion

GPCP-derived precipitation values are generally

higher than CPCUGA. This could be due to the issues

associated with satellite precipitation estimates from

GPCP. Satellite precipitation amounts are typically re-

trieved from cloud information such as the cloud-top

temperature, cloud-top height, etc., while gauge obser-

vations only indicate how much precipitation has

reached the ground. Therefore, overestimations may

occur in satellite-based precipitation due to evaporation

of precipitation before it reaches the ground. The com-

bination of GPCC gauge observations and satellite

measurements do help GPCP to generate more reliable

precipitation trends over the CONUS; however, how

they are weighted may influence the results. For exam-

ple, in this study an overall wet bias is found in GPCP

precipitation.

In terms of the reanalysis datasets, they illustrate

reasonable spatial distributions of precipitation over the

CONUS when compared with the two reference data-

sets, but significant seasonal and regional differences

exist (Fig. 4). Over the mountainous regions, pre-

cipitation amounts simulated by global reanalyses are

generally higher than CPCUGA (Table 3) throughout

the year. The RDP patterns of the four reanalyses that

assimilate satellite radiances are very similar to GPCP’s.

It could be problematic that the satellite retrievals, both

IR and passive microwave, have difficulties detecting

shallow, orographic precipitation (Adler et al. 2003).

Issues that may also be associated with reanalyses over

this region are the model difficulties in accurately esti-

mating precipitation over complex terrain, as well as the

lack of observational upper-air reports from meteoro-

logical stations assimilated into the models. Regarding

GPCP, another possible reason to explain its perfor-

mance over the mountainous region could be because

the gauge reports from GPCC are less than those col-

lected by CPC, leading to the underestimation over

these areas for all seasons. The underestimation by

GPCP over orography was also found in McPhee and

Margulis (2005) and Nijssen et al. (2001) and is attrib-

uted to the sparse distribution of rain gauges in moun-

tainous regions. Therefore, GPCP might not be suitable

to use as a reference data for validation studies over

complex terrain. Meanwhile, CPCUGA estimates may

face the gauge undercatch issue. For example, over

Montana and between California and Nevada, the

CPCUGA estimates are less than GPCP estimates

throughout the year; these regions have sparse gauge

density, as mentioned in section 2. Even though oro-

graphic effects are considered when applying the OI

analysis, large uncertainties can still exist with fewer or

without any gauge observations. For NARR, the dif-

ferences between it and CPCUGA are much smaller

over the mountainous terrain compared to GPCP. This

could be because NARR assimilates the observed pre-

cipitation from the same gauge stations as in CPCUGA,

and also applies an orographic enhancement technique.

In addition to positive biases over mountainous regions,

negative biases are found in the six reanalyses as well as

in GPCP over the north-central and northeastern parts

of the country, especially during winter when snowfall

and sometimes heavier convective snowfall often occur.

This issue may be associated with the uncertainties in

satellite data over high latitudes during snow events.

The overestimations in global reanalyses are more se-

vere than in GPCP, indicating that the models used in

the reanalyses may be less skillful in reproducing

snowfall events. In the meantime, the gauge observa-

tions may experience large uncertainties and may result

in the dry bias when estimating snowfall. Hence, the large

differences between global reanalyses and CPCUGA

over these regions during winter may be equally attrib-

uted to the observational uncertainties in CPCUGAand

the modeling deficiencies of the reanalyses. For SGP

and SE regions, the RDP distributions and values

(Table 3) vary significantly from season to season, in-

dicating the differences in reanalyses are perhaps due to

the random errors. Additionally, all five of the global

reanalyses seem to have systematic errors over the WC

because their bias distributions, as well as the magni-

tudes of the RDP values, are very similar during the

spring, fall, and winter seasons. The differences in dis-

tribution that occurred during summer could be due

to the significantly lower precipitation amounts over

WC region.

ERA-Interim, MERRA2, and CFSR show very

similar systematic behaviors in the spatial distribution

of RDPs during different seasons (Fig. 4) because they

assimilate almost identical satellite radiance data as

input into their models. Underestimations are also

noticed in these three reanalyses over the central part

of the country, where precipitation is related to

atmosphere–land interactions that may be deficiently

represented in the model. During summer, when

convective precipitation events occur over the Great

Plain regions, more severe underestimations are

found in these three reanalyses, implying that the

negative biases might be caused by the convective

parameterization of the models. Besides assimilating
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the satellite retrievals used in the ERA-Interim, the

radiance data from the Japanese GMS and Multifunc-

tional Transport Satellite (MTSAT) are reprocessed in

JRA-55, which is only done by JRA-55; in addition, no

IR data were used in JRA-55 after 2003. Therefore,

JRA-55 shows similar characteristics in RDP

FIG. 8. Spatial distribution of monthly precipitation anomaly trend of CPCUGA, GPCP, and six reanalyses

during the period 1980–2013. The gray crosses indicate the grid boxes with statistical significance at the 95%

confidence level based on the Mann–Kendall test.
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distribution but also shows differences over the cen-

tral part of the country (Fig. 4) compared to three

reanalyses discussed above. The convective scheme

adopted by JRA-55, particularly the inclusion of the

DCAPE convection-triggering mechanism [CFSR

and JRA-55 both use Arakawa and Schubert (1974)

convective scheme], seems to produce more pre-

cipitation, as it overestimates the precipitation over

the Great Plains during spring and summer.

Previous studies (Zhang et al. 2012; Rienecker et al.

2011; Robertson et al. 2011; Bosilovich et al. 2015)

have shown that precipitation in global reanalysis

datasets is very sensitive to the observation system.

For example, with the introduction of SSM/I in late

1987 and the Advanced Microwave Sounding Unit-A

(AMSU-A) series in late 1998, series of jumps or shifts

in trend were found in MERRA and ERA-Interim

global precipitation (Rienecker et al. 2011). In this

study, however, it is noteworthy that although the

interannual variability seems to be represented well

by all reanalyses, unreasonable linear and spatial

trends are generated by these reanalyses. For exam-

ple, ERA-Interim shows a significant decreasing lin-

ear trend of24.53mmyr21 in precipitation during the

study period. Simmons et al. (2010) found that this

trend is more related to a declining shift that starts in

the early 1990s and considered that it may be related

to the prescribed SSTs used in ERA-Interim. There-

fore, caution should be taken when employing rean-

alyzed precipitation in trend studies. The biases

existing in reanalyses should also be considered when

using them for different applications, for example,

consistent positive biases are found in MERRA2,

JRA-55, CFSR, and 20CRv2c, while a consistent

negative bias is found in NARR. To further

investigate the influence of changes in observation

data and how these changes may affect the quality of

reanalyzed precipitation, correlation coefficients and

RMSEs are computed between CPCUGA and GPCP

and between CPCUGA and reanalyses for the

monthly precipitation values at each of the 260 grid

boxes over the CONUS domain. These results are

presented in Figs. 9 and 10, respectively. ERA-

Interim and CPCUGA are in good agreement

throughout the entire study period, except for several

months that have comparably lower correlations

(;0.75) during the pre-SSM/I period. MERRA2,

JRA-55, and CFSR compare reasonably well with

CPCUGA, but their performance appears to drop off

after 2005 in MERRA2 and after mid-2000 in JRA-55.

In global reanalyses, satellite radiance data are used

to determine the humidity information as input into

the models (Dee et al. 2011; Koster et al. 2016), where

humidity is usually calculated based on empirical

statistical methods from satellite retrievals. These

empirical relationships are based on observational

studies, but, because of some changes in atmospheric

moisture structure with time, the humidity profiles in

recent years may not be accurately characterized by

these empirical approaches. This may introduce er-

rors into precipitation output and lead to the de-

creasing correlations with time found in MERRA2

and JRA-55. Additionally, the drop-off in correlation

values in JRA-55 may also be due to the atmospheric

motion vector (AMV) data from geostationary and

polar-orbiting satellites not being reprocessed after

FIG. 9. Correlation coefficients between CPCUGA and GPCP and between CPCUGA and the reanalyses for each monthly pre-

cipitation value; the value calculated for each box is based on 260 grid boxes over the CONUS domain. The x axis represents the month

and the y axis represents the year.
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June 2004 and no IR radiance data being used since

2003 (Kobayashi et al. 2015). Zhang et al. (2012)

found that CFSR has a sudden change in precipitation

in 1998 resulting from the inclusion of ATOVS data.

However, in this study, the correlations and RMSEs of

CFSR are relatively consistent over time. Again, very

strong correlations (;0.95) and low RMSEs are found

in NARR during the study period owing to the as-

similation of gauge observations, though relatively

lower correlation coefficients are found from March

to October 1990. Note that during the spring and

summer seasons, five global reanalyses have higher

RMSEs and are less correlated with CPCUGA, which

could be associated with the systematic errors of the

assimilation models, which support the results in

Ashouri et al. (2016) that MERRA has issues in re-

producing extreme precipitation over the Great

Plains and in Prakash et al. (2015) that larger bias and

RMSEs are found in reanalyses over the North

American monsoon region. GPCP shows consistently

high correlation coefficients with CPCUGA (;0.95),

and similar to ERA-Interim, several months with

slightly lower correlations around 0.8 are found be-

fore the SSM/I period. Contrary to the behavior of

global reanalyses, GPCP has higher correlations and

lower RMSEs during the spring and summer months.

20CRv2c only assimilates SLP and SST observations,

and thus it is resistant to the introductions of new ob-

serving systems (Lee and Biasutti 2014). Therefore,

20CRv2c has less in common with other reanalyses’

precipitation fields during the comparisons. Neverthe-

less, the biases in precipitation generated by 20CRv2c

are more significant than in the comprehensive rean-

alyses, which produce the highest RDPs and RMSEs

throughout the year, the lowest spatial correlation

coefficients (Fig. 5), and some unrealistic interannual

variations (Fig. 7). This inaccuracy in representing pre-

cipitation in 20CRv2c could be because SST and SLP

data are less related to atmospheric moisture and thus

the model cannot reproduce the physical and dynamical

processes when generating precipitation analysis. Note

that despite a dense observational network and a com-

plete sea level pressure record through the satellite era

over the United States (Lee and Biasutti 2014), the

performance of 20CRv2c, when compared with two

reference data, is still the worst among the reanalysis

datasets in this study. This is not unexpected due to the

simplicity of the data ingested—a sacrifice made for a

longer data record.

NARR performs better in reproducing precipita-

tion than global reanalyses because it indirectly uses

rain gauge analysis. Negative biases are found in

NARR over the most of the CONUS domain, which

may be related to a model deficiency and errors in its

objective analysis technique, and these should be

addressed in future versions. Assimilation of pre-

cipitation observations in reanalyses can help produce

more accurate precipitation analysis fields and im-

prove the quality of output variables from land sur-

face analysis, because model-generated precipitation

is usually used as forcing data for the land surface

model in reanalyses, such as in JRA-55.

6. Conclusions

This study evaluates the performance of precipitation

data from six recently developed reanalysis products

with gridded gauge data CPCUGA and satellite–gauge

combined GPCP product over the CONUS from Janu-

ary 1980 through December 2013. Based on the results

FIG. 10. As in Fig. 9, but for RMSE.
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from 34-yr comparisons and trend analysis, we summa-

rize the following conclusions:

1) Strong agreements are found between two reference

datasets, but the overall precipitation derived from

GPCP is around 8% higher than CPCUGA—this

bias should be taken into account when using GPCP

to validate the global precipitation from climate

models. In addition, GPCP estimates may be less

trustworthy over the orographic terrain. The pre-

cipitation generated by four reanalyses that assimi-

late satellite radiance observations tend to be more

similar to GPCP-derived precipitation, which is not

unexpected because they use similar satellite data.

2) All of the reanalyses are able to depict reasonable

spatial patterns and amounts of precipitation over

the CONUS, especially for the northwestern part of

the country. However, global reanalyses generally

overestimate the precipitation over the mountainous

regions throughout the year and underestimate the

precipitation over the Great Plains during summer

as well as over the north-central and northeastern

regions during winter.

3) For interannual precipitation, MERRA2, JRA-55,

CFSR, and 20CRv2c have positive biases while NARR

has negative bias throughout the study period. Some of

the interannual variability of CPCUGAprecipitation is

well represented by the six reanalyses. The annual

accumulated precipitation over the CONUS has a de-

creasing trend of 21.38mmyr21 during the study

period based on CPCUGA data. Determined by the

observed precipitation, the north-central and north-

eastern parts of the country show positive trends, while

most other regions show negative trends, with statisti-

cally significant negative trends over the mountainous

regions. However, none of the reanalyses generate

reasonable linear or spatial trends as found in the two

reference datasets.

4) For users of reanalysis products, we conclude that

ERA-Interim and NARR are comparatively better

at representing the precipitation over the CONUS

as indicated by their correlation coefficients and

standard deviations against both CPCUGA and

GPCP estimates. Even though a decreasing trend

exists in ERA-Interim, it is still the second-most

consistent reanalysis product when compared against

the CPCUGA.

Overall, although reanalyses can provide realistic

precipitation analysis, caution should still be taken

when using reanalyzed precipitation data for climate

studies. For instance, errors may exist in model land–

atmosphere interactions and convective and snowfall

parameterizations. Even though changes in the

observing system seem to have little influence on the

continuity and quality of precipitation over the CONUS,

they may still cause inhomogeneities in reanalyzed cli-

mate over parts of the world where radiosonde data are

less available and the modeled precipitation is highly

dependent upon satellite observations, such as over

oceans and Africa. Furthermore, the general type and

quality of assimilated data will largely affect the per-

formance of reanalyses. The results presented in this

study provide useful information on the limitations and

strengths of each reanalysis dataset and suggest sub-

stantial efforts are necessary to further improve the

reanalysis precipitation estimates in future versions.
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